
TECHNICAL NOTES 

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

---__C- 

No . 751 

DA&fPING FORXULAS AND EXPERIMENTAL VALUES OF 

DAMPING IN FLUTTER MODELS 

By Robert P. Coleman 
Langley Memorial Aeronautical Laboratory 

. 

AFMDC 
Washington 

February 1940 T~Cl-!XC .I !, LTX?ARY 



TECH LIBRARY KAFB, NM 

NATIONAL ADVISORY-COMMITTEE FOR.AERC?NAUTICS 

TECHNICAb.NOTE NO."751 
-A-- 

DAMPING FORMULAS AND EXPERIMENTAL VALUES 
-. . . _ 

OF DAMPING IN FLUTTER MODELS ~ ' 

By Robert P< Coleman 

,.. 
,, ,. ’ . 

. SUMMARY : ._ 

The problem of determining values of structural damp- 
ing for use in flutter call,culations-is discussed. The. : 
concept of equfvalent viscous damping is reviewed and its 
relation to the structural damping coefficient g intro- 
duced in B.A.C.A. Technical Report No. 685 3s shown. The 
theory of,normal modes is reviewed and a number of methods 
are described for separating the motions associated with,. 
different modes. Equations are developed for use in eval- 
uating the damping parameters from experimental data. 

Experimental results of measurements of,damping in - 
several flutter models are presented. I . 

INTRODUCTION ._ 
. . d 

One important s.tep.fn the study of the flutter prop- 
erties of an airplane structure is the determination of 
the' structural damping. In an investigation of flutter 

.carried out in the N.A.G.A. 8-foot high-speed tunnel, it 
was.des2rable to. determine the damping in the models test- 
ed. The present report is a description of the methods 
used, .together with a review and a critical discussion of 
the principlea. andythe derivations pertaining to the meas- 
urement of damping parameters.. 

The presence of damp+ng in a structure can be in- 
ferred from and its amount can be measured by a number of 
different effects.-* The princfpal effects that depend upon 
damping are: ,' 

(1) The rat,s of decay of free vibrations. 

(2) The amplitudes produced by e;iven applied forces 
at a resonant frequency. 
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(3) The heat p-reduced by vibration. 

(4) The elastic hysteresis loop. 

A complete phy.sical theory would.have to account for, 
all the observed results in alLthe -preceding effects, For 
the purpose of flutter calculations, however, a complete -. - physical theory is unn-e-c.<is&ry; :For example, the exact 
shape of the hysteresis loop may be unaccaunted for. It is 
sufficient to express the damping in terms of certain -ef- 
fective parameters that can-be conveniently incorporated 
into the flutter analysis. The present, report reviews 
some of the results obther investigators on the physical 
laws of damping but makes no attempt to find-the true law 
of damping in the flutter models.' 

The r-esults of damping -experiments are often expressed 
in terms of the loss of energy per cycle ?&ring vibration. 
This en-ergy can be considered as consisting of two parts: 
the part that is Jndependent of frequency and the part 
that depends on frequency-. The.independent part has been' 
terme.d "statical hysteresis"; the dependent part, "hered- 
itary hysteresis.tl The results of numerous investigations 
indicate that, fo-r most solids, the statical hysteresis 
accounts for practically all of the internal damping. FOT 

example, Kimball and Love11 (reference 1) found that, in 
various metals, rubber, glass, celluloid, and maple wood, 
the loss of energy per cycle Fvas independent of frequency 
and could be represented with sufficient accuracy for most 
surposea by a constant times the square of the stress am- 
plitude, Keule&?hn (reference 2) found that the loss of 
energy per cycle in Armco iron was' the same whether deter- 
mined from a static-hysteresis test-or from the rato of 
decay of vibrations. Other investigators (references 3, 
and 5) have likewise found the loss ser cycle to be inde- 

4, 

pendent. of the frequency. * 

Although the damping of materials is conveni.ently ex- I 
pressed in terms of the loss.of energy per cycle, it is 
drfficult to write an analytical equation of motion that 
mill rapresent the observed damping groperties. Nearly 
all of the published~analytical treatmen'ts express the 
damping as,a force proportional to tfiis ve'rdcity. The con-' 
itant of proportionality is thus a measure of the equivn- 
lent viscous damping. This constant may then be regrad- 
ed as a function of amplitude and frequeatiy. Th-e use of 
the analysis of viscous damping for casesof other types 
of damping is based upon the approximation of assuming 

. 
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that the hysteresis loop, can be replaced by an ellipse 
having the same amplitude and the.same area as the,actual 
loop. The damping coefficient determining thfs .equiva- 
lent ellfpse is then used .to express t-he results of oxpcr- 
iments. Van Schlippe (reference 6') has appliod this- meth- 
od to the analysis of intor.nal damping. 

Another analytical method of describing internal damp- 
ing has been used.in reference 7. If the displacement is 
represented by a complex variab,le, a damping force propor- 
tional to amplitude but indepen.deat of frequency can be. 
represented by a complex stiffness constant. If this com- 
plex stiffness fs written in th.e form k(1 + ig> 
is a nondimensional damping coefficient. In tae9fo~FZln~ 9 . 
analysis, the relation of the coefficient g to the vis- 
cous damping coefficient is shown and the principal formu- 
las for use in ,evaluating these coefficients from actual 
data are derived. 

The basis of the analysis of vibrations In continuous 
structures is the theory of normal modes. A normal mode 
means a type of vibration,fn which each particle of a struc- 
ture vibrates in simple harmonic motion with the same 
frequency and passes through its equilibrium position at 
the same time. The important property of normal modes that 
makes them useful in vibration is.the fact'that, when they 
exist, any possible type of vibration of a system can be 
represented by the superposition of vibrations in each of 
the normal modes and each normal mode can be treated inde- 
pendently as a system of one degree of freddom. It has 
been shomn by various writers (see, for example, reference 
89 PPm 107-108) that normal modes will: certainly exist if 
there is no damping and if the potential and the kinetic 
energies are quadratic functions of the coordinates and 
the velocities of the system. In the theory of vibrations 
the amplitudes are usually assumed to be small enough that, 
5n the expressions for the energies, 
terms may be neglected. 

all but the quadratic 
Even with damp',ng, normal modes 

will still exi-st under certain conditions. It can also be 
shown that, nhen the damping is small, the theory of normal 
modes always gives a good approximation to the actual vi- 
brations. 

Then an external Periodic force is applied to a struc- 
ture, all the normal modes are excited to a greater or a 
lesser extent. But when the amount of damping is small and 
the frequency of the applied force is near to one of the 
resonant frequencies of the structure, one of the normal _. & 
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modes becomes predominant in comparison with all of the- 
others. Under this condition;.the anaiysfs for one degree 
of freodom will provide a good apgroximatiqn for the re- 
sponse curve in that particular range of frequencies. The 
deviations of the actual response from the values appropri- 
ate to one degree of freedom may be called-the normal-mode 
intnrference effect.. Vhenevcr the shapes of the deflcc- 

,tion curve for the various modes are known, this interfer- 
ence sffect can be evaluated; A n-umber of methods are de- 
scribed for experimentally evaluating this effect. Simple 
theoretical expressions for the exact response curves have 
also been.found for the cases of A uniform cantilever beam 
-in bending and in torsion. : 

It is to be noted that measurenonts of the type .con- 
siderod in this re-port yield thd tota1 dampin%, Including 
internal. damping, air damping, lassos in the supports, 
and whatever typos of dampin< are present. . 

SYMBOLS 

m, .mass. 

f(XIi Tcstorinq force. 

k., ssrinq constant of a-vibrating system. 

bd, deviation of.restoring force from Hooko's.laa. 

F, F,, applied furce';.instan-taneous a3.d maximum value. 

t, -time. -. 

X1 displacem.ent in system of -one- degzFse-cf freedom, 
or position coordinate ina-con55nuous structure. 

arrr ( loss of energy or work dono--per cycle. . 
AnsBn,CnsDns constants.- 

C, damping force _acr unit velocity. 

f-!J, angular frequency. 

UJ,,~ natural angular frequency with no damping, h/K 

Y 

. 
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Wl’ natural angular frequency mith'danping, &$Tc 

f-h, angular frequency of maximum response. 

A, c/2m. 

Tc, period of free vibrations, 2d!Jl ' 

6, 6,, nondimensional damping parameter, cJmw*. 

ccr' value of c for critical dampinp, 2mwo. . 

a1 ' x0 $- 105 Q =a1 is the lo~arithm'ic decrement.' 

M, constant. 

B, damping coefficient used in reference 7. 

K, spring constant of a vibrator. 

R, radius of crank arm. 

1 xo ' amplitude corrected for effect of coupling with 
vibrator. 

U(x), disglacement function for a continuous structure. 

qIl* Seneraliied coordinate. 

x,(x), normal-functi.on. ~_ 

T', kinetic .ener<y. 

v, potential enersy.. 

I?' I dissipation function, 

.an 3 b,n 9 Cn 9 'coefficients of.mass, damping, and stiffness. 

Q n* Seneralized force. ,. 

Axi, interval of distance alons: a beam. 

D rnr denominator of .mth term in equation (36). 
.-. 

P* mass density. 
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polar moment of inertia of-section. 

torsion m,odulus of section, 

shear modulus of material. 

angular disp.lacenent. 

You.n4.'s modulus. 

moment of inertia of section. 

area of section. ' 

(2n - 1) J-iqw; for large values of n. 

AXALYSIS 

t 

, 

Equivalent Visccus DamPing 

The analysis of viscous damping is often applied t-o 
systems having a different physical lam of damping. For- 
tunately, this convenient %ut inexact analysis can p,ive 

. 

useful infcrmatiqn because certain approximations are jus- 
tified when the amount of damping:is small-. Th-e basis o.f 
this method follows3 In viscous damping, the hysteresis 
loop is an ellipse. Corresponding td any'other'typs of 
damping, an equivalent viscous dampink coqfficient can be 
defined such that the hysteresis ellipse nil1 have the 
same amplitude and the same area as the actual Loop. The -_ 
param,eter characterizing this equivalent‘+llip.se can then 
be used as a measure of damping, .- -I ..: - 

Consider a typical elastic hyste.res-i-s loop (fig. 1). 
This curve is seldom directly measured, but atypicai shape 
can be inferred fcr the surpose of--this djscu.ssion. loOW 

the area of this loop is a measure .'&f -t&l?,-en.ergy dissi-pat- - 
ed per cycle, that is, a measure of.the darnpin-?. If the 
amount o? .damping is small, the laop must be narrom. From 
Hooke"s law, the mean slope stiould be a.pproximately con- 
stant. The equation of motioncan be written 1 

a;; + f(x) = F 'sin uJt (1) 
r-2 -i- g(x) + kx = PO sin uJt ' . 

f(x) = kx + g(x) 
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where kx is the elastic force corresponding to Hooke's 
lam and q(x) is an undetermined function to take account 
of the damping. 

The energty dissipated per cycle Ts. 

27T/.JJ 

[kx + g(x)]% dt 
. . 

(2) 

and, whatever the actual lam of damping may be, the ampli- 
tude of steady forced vibrations is determined by the con- 
dition that the work done per cycle by the external force 
is equal to the dissipation of energy by the damping. 

2Tr/w 

r 

F _d_x dt dt = 
0 s 

277/w 

f(x) ;T dt = AW ' (31 

0 

Now the deflection nil1 be very nearly a sine function of 
the time but, for ,generality, a Fourier series nil1 be as- 
sumed. 

Let 

x = c”. An sin nWt + Bn COB nwt 
n=l 

The' phase can be adjusted arbitrarily to make Bi = 0. The 
velocity is , _ : 

dx = c" AnnWcosnwt Z n=l - B, nw sin nwt 

All of the coefficients except A, mill be small mhen 
the amount of damDing is small. Similarly, for a given am- 
pli'tude and a given frequency, the function g(x) can be 
expressed as a Fourier.series. 

g(x) = n'l Cn sin nwt + D, cos nwt 7 

The elastic for.ce : kx does not contribute to the damping 
and may b-e-omit,ted from the expression for AW. 
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Then 

s 

zl-iiw 
Am = dX 

dxl dt rdt- 
0 

s 

27T/W 

= c" (C, sin nwt -I- Dn cos ntut) 
0 

n=l 

. 

X .gl. (nwA, cos,nwt - uuB, sin nwt) dt 

= & m-r (DnAn - %Dn) .- 

= n (D~A, + 2DiAe - 2C,a,- -I-***) (4) ' .- 

All the cress products of sinesand cosines and the 
products 3nvolving two different values of n van'ish in 
the int-egration. The only remaining terms are products of 
oath Fourier component of s;(x) multiplied by the COYF&- 

I- - 

-- -. 
spondinq Eourier component---of the velccity. Thus, if the 
second harmonic and the higher terms i,n t?re E'ourier series 
for x and g are small quantities of the first order, 
their contribution to the value of 4Tii will involve only 
small quantities of the second order, For the definition 
of tha equivalent vfscous damping, the.se higher order terms 
are neglected in comparison with the term in AI. 

Then 

Under this assumption, the loss af energy per cycle depends 
only upon the Elouricr component of--the restoring force in 
phase with the velocity. But it is just this component 
that corresqonds to t'he term for vfscous aamping. The 
equivalent restoring force is 

. 



N.A.C;A. Technic&l -Ndte No, .75.1 9 

f(x) = kA1 sin wt + D, cos wt 

= kAl AIV sin wt + - 
TAl 

co9 wt (6) 

Thisfunctlon gives a hysteresis loop in the form of an 
e'llipse. The coefficient o.f viscous damDing, c, which 
Sivcs the same energy loss per cycle is siven by 

dx 
c FE = CwAl cos wt 

AT = - co9 wt 
nA1 

Hence 

C =A!.- 
TWA,= 

(7) 

Derivations of Formulas for One Degree of Freedom 

In the following anal::sis, it has been recognized that 
the quantity ti, = fihy the natural frequency without 
damDing, is not an observable but a conceptual quantity. 
Actual measurements can yield only tZle natural frequency 
vith damginq and the frequency of maximum response. Hence, 
the equations for determining. damping parameters should 
contain only the observable frequencies and not the fre- 
quency wo. 

Free vmation.- .--- The equation of motion of a vibrating 
system with viscous damping will be taken in the form 

rn'; + ck + kx = 0 (8) 

The solution is 
- ht x = Roe sin wit 

where . 
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The damptine; ~111 be expressed in terms of a nondimensional 
parameter defined, by 

This parameter is simply related. to the frac.tion of c_rit- 
ical damping. The coalition for critical damping is WI = 
hence .-.- 

C C 6 -=--pm 
ccr 2nw, 2 

The amplitude after n completg .cycleg of free vibration 
is 

FiC7T 
-nhT - -......- 

XlW1 
X n = x08. = xoe 

and since 

1 = -- 
7-fn 

Define 

1 * 
"1 = z 

xO 
loge Fn 

Then 

7. 
‘- L .- 

(10) ’ .. 

. 
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From this equation it is apparent that, when 6 is small, 

6 z al 

The quantity usually called the logarithmic decrement is 
equal to nal in the present notation. 

_Forced vibration or.oduc-ed by a,DerSodic force of con- 
stant amolitu&.- 
Tables, 

In terms of the notation of complex var- 
the equation of motion of forced vibration produced 

by a periodic f0rc.e of constant amplitude is 

rn.2 + c; + kx = Foeiwt (13) 

The solution for a steady state is obtained by making the 
substitution 

Then 

22 F, 
m m 

x0 = - - = m-w--- 
&Jo2 - w2) + i $y (w," .- w2) + iu.uJ,~ 

or, for the absolute magnitude of x0' 

m x0 = - -- --- 

WO 2 
2 W2 2 

11 l-gz > 4-6 Q 

The frequency w, of the impressed force for which 
is a maximum is given by 

. 

(14) 

(15) 

x0 

= -0 

(16) 
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The amplitude at resonance is' 

FO -- 
m 

FO -- 
‘k 

‘. - 

= ----- 

6 l-2- 
/--- 

s” -. 

Ey use..of equations (15) e.nd (16);there is o.btained 

Ifhere 

2 
6 = 2 &--.-- 

! 
1 ’ 

.J "t-1 ) 
a2 

a;! 
3 = 

- 

(18) 

, 

c, 

w" 
QFced vibration qroduced Q.a force pro3orfional to 

- The equatiqn of-motion of forced--Asration produced --A- 
by a force gropprtiopal to -w2 is.. .- 

ml + c; -I- ix = Mw” ,iwt 

where M is a constant. The amplitude of steady vibra- 
tion is given by 

The frequency W, of the. im?reased force for which x0 
is a maximum is given by 
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l . 

m -I-- - 
(W. 2 - w2)& + 62w2wo 

I 

from which is obtained 

2 
2 

wm 
wo 

=- (21) 

,l-5 

The amplitude at resonance is 

. .M, 
ii 

(22) 

By use of equations (20) and (22). there is obtained 

where 

s2=2 l- 
( 

_-d---- 
J-&i > (23) 

83 
a = 

2 

( wm2 -- 
W2 IL > -- 

( 

a 
2s - 1 

> 

Properties of Damping'Coefficient, g 

Theodorsen and Garrick (reference 7) have used a com- 
plex stiffness function to describe the phenomena of dnter- 
nal damping, The properties of this functton are herein 
developed. 

The equation of motion of a vibrating system can be 
written in the form 

, 
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(24) . 

The use of the imaginary term ig implies that the dis- 
placement .is a sine function of time and that there is a 
component of force hroportional to the amhlitu-de and inde- 
pandent of frequency but in phase with the vel.ocitg. The 
solution of equation (24) is 

-. 

g eiwt 
k' 

X = ----_- 
1 UP - -7 t-iq 

00 

(25) 

This equation agrees with Schligpe's 
6) and is similar to the result.just 
damping except that the damping term 
i(w/w,fs. Thus, the numerical value 

analysis (reference 
given for viscous 
3.S ig instead of ~- 
of g is nearly equal 

to the value of- 6 Qbtained by measurements close to a 
resonant peak. 

The frequency of maximum response is obtained as be- 
fore by differentiating x with respect to w'. The re- 
sult for this case is 

Hence 
urn = wg 

F .- 
k. 

F -- 
k x, = ;--- 
1-4 

- 

This equation shovs that g is siven by'the same expres- 
sion as the quantity a2 of equation (18). 

t 
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Further Details of .Practical Importance 

In the elementary analysis, the applied force is usu- 
ally assumed to be independent of the amplitudes produced 
in the vibrating system. 1 In actual apparatus, however, 
the motion of the Point mhere the external force is applied 
frequently affects the value of the force, so that the ac- 
tual force transmitted to tho structure changes mith the 
amplitude of vibration. When.th-e force is produced by a 
spring of stiffness K fastened to a crank of radius R 
(see fig. 2(a)), the force .on the structure is 
- K(x - R sin wt) and the equation of motion is: 

rnz + kx = - K(x - R sin uJt> (27) 

Then 

1 -d m+k 'I - = ---- + ---- 
X KR sin wt R sin wt 

'1 1' - 
x0 

c7+1 
x0 R 

-. 1 11 ,- z-m- 
x0 ! x0 B (28) 

Similarly, for a rotating mass fastened to the structure 
(see fig. 2(b)), the equation of motion fs: 

rn; + kx = - ?d$ (xc R sinwt) (29) 

The solution is: 
, 1 -mw2 + k 1 - = -- -_ w ------ 

X Mwa R sin wt R sin wt 

1 1 1 
xg =--Ii .X0 

. ‘. 1 1 1 
----f =---+- 

X0 X0 R (30) 

The corrected ampl,itude, x0', corresponds t,o the amplf- 
tudes given by theoretical equations in other sections of 
this report. Equations (28) and (30) thus Provide a method . 



B.A..C.A. Technical Note No. 751 

of correcting the measured amplitudes for the effect of a 
vibrator having a small stroke. The natural frequencies 
are changed ta 

J 
-- 
k+K --- 

m 
and . 

I-- 
k --1 

m+M . 

for tha two types of vibrators shown in fiqure 2(a) and 
md, respectively. 

Derivation of Formulas for Continuous Structures 

General case.- ---- .!J.he ganerql.thepry of. vibration has 
been presented by a number of authors, (See, for example, 
ref.erence 8, chs. IV and V.) This theory deals with the 
problem of finding the normal coordinates of a system, 
that is, the coordinates in terms of which the aquations 
of moti,on have only one coordinate occurrlng in each equa- 
tion. The existence of such coordinates for syst-ems with 
damping has been discussed by Lord Rayleigh, who shows 
that these coordinates exist for certain distributions of 
damping and that, in all cases of small damping, the.arrors 
introducsd by assuming normal modes are of the second ordar. 

A brief -outline of the method of normal coordinates 
is given. The application of this metho.& to the determi- 
nation of damping in each mode of a cantilever beam is then 
discussed. 

Suppose that the functions q(x) 3 qivfng the shape 
of the deflection curve for eachmode, are known. Then 
the displacements corrospond%ng to any motion of the systsm 
can be exlsressed as a summation of tho displacements in 
each normal mode 

u(x) = z qn K,(x) (31) 

According to Lord Rayleiqh (reference 8, pp* 130-131), 
in damped systems for which normal modes exist, the kinet- 
ic and the potential energy functions, T .and V, and the 
dissipation function, F, can b-e expressed as sums of 
squares of gene-ralized coordinates or velocities. 

. 
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Then 

2F = b,&=.+ b,ia2 -I- . . . + bn$n= + . . . 

2v = clql= + c2qas f . . . + cncg f . . . 

The equations of motion mill be obtained 3y the use of 
Lasrange's equations, 

d 
( ’ SL+ aP+?I.=Q. zt a$./ a& as, 11 

anti, + bnin + cnqn = Qn (33) 

(32) 

where Qn is the generalized force corresponding to qn' 
The form of Qn is found from the relation * 

where 6W is the work done on the system by the external 
force during a displacement 6qn. 

For example, in the- case of a force F = Fmoe iwt . 
piied at the point x 

w- 
=x1, 

6TB ='Qn 6q, = FSu = Foei& X,(x,) Eq, 

Kence 

Qn = %(x1) Foei@ 

The solution of the equation.of motion is 

X,(x,? F,ed"t 
9n = -c(12a'-- -- 

n + iwb, + c, 

(34) 

. 

X,(x1) Foe iult 
= -- --- 

2 l- w 
anwo n $=$ + i w 6n 

on on > 

(35) 
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where 

. 
bn 6, = -- 

"n won 

The displacements are-then given by 

u(x) = g qn x, = c X,(X) X,(X,) Geiwt ----me ------ (36 > 
n 

an 

Ln the summation, itts n-ecess%ry to sum the real and the 
imasinary Darts separately. If only rdal quantities are 

1 used, the equations become 

Qn = X,(x,) F, sin wt 

qn = A, sin wt -I- Bn cos cut 

xn(Xl) FO 
An = --+.I--2 _ ( 

UJ" ' 1 - z-z) 
----_-_- 

an 1 

+ 

_ . 

u(x) = C An Xn sinwt + Bn Xn C&S wt (371 
n 

Equation (36) is the connecting link botneen the analy- 
sis of vibration in one dosree of freedom&d in continuous 
structures. Each term ofthis equation has the same form 
as the solution for a system havfn< one degree of freedom. 
fVhen a force is applied to a structure, all the modes are 

.- 

. 
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exci,ted to :a greater or a lesser extent and the problem is 
.to find the amounts of damping associated with each mode. 
There are several ways of solving this problem. 

For any case in Rhich the normal functions are known, 
the damping in different modes can -be separated by an in- 
tegration. If both sides of equation (36) are multiplied 
by X,(x) and integrated over the length, then all but, 
one term in the summation will vanish. 

u(x) = C 9n xn 
n 

s 

t 

s 

1 

X,(x) u(x) dx = X,(X> C qn X,(X) dx . 
n 

0 0 

s 

L 

= qm 'Xm2(x) dx 
0 

I .&&d u(x) dx 
q, = AL----------- 

%(x1> Foeiwt 
= --_------P-P (38) 

{' Xm2 (xj dx am WIm (1 - $$- f i e 6m) 
om 

The, quantity q, obtained by graphical or numerical inte- 
gration of the measured amplitudes u(x) can then be used 
as though it were the amplitude in a system having only 
one degree of freedom. The process of evaluating this in- 
tegral in practical cases. consists in msasuring the 'ampli- 
tude at a number of points and evaluating the sum: 

Kim = 
t X,(x,) u(x~) Axi 

_-_------ -- 
c xm2 (xi.1 Ax, 

(39) 

i 

In the gresent tests, the procedure was simplified 
still further. The disturbance from two of the modes can 
be eliminated by applying the force.at a node of one of 
them and measuring amplitudes at a node of the other. The 
i;,;i;;cytion of this method follows immediately from equa- 

6 . For measurements in the ranqe of frequencies 
near to won, this equation can be written: 
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U(Q) = 
X m,lCXa> Xmt,(Xl) Foeiwt X (x,> + -m X,(q) Foeid -we-_ e---P-- 

%-l- 1 Dm 

21(X=) %I+I(~I) F~eiut + small terms X 
+ -pm-- ------- 

D m-F-2 

where D, is written for the denominator in the nth 
If x1 and x2 are c.hosen such that 

X nll(x1> = xm+l(x,) = 0 

then the.amplitude is given by 

x (x,> xm(x,) Foe iwt 
u(x2)=o+ --J+y --M-c -- a + O+ small terms 

2 
am Won 

( 
W 1 - Us + i zg- 6, 

0 !:I OXl > 

(49) 

term. 

(41) 

Another method of finding the damping is by evaluat- . 
inq the infinite serfes given by equation. (36) to find the 
resultant respon.se curve, A comparison of thfs exact 
curve with the responsecurve for on‘e dagse&.of freedom 
shows how to carrect the ana.lgsFs for one degree of free- 
dom to take account of all the disturbing modes. Expres- 
sions for the sum of the infinite series (equation (36)) 
have been found for the cases of torsion and bonding of a 
cantilever beam with the'vibrator at the tip.- 

. 

Torsion,ofA unfform beam.- Consider a cantilever beam 
excited intorsional vibrations by an oscillating torque 
applied at the free end. 

0 0 

(42) 

Take F = 0 - 
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,:Hence 

s 
t 

a,= . ii P Ip.Xn2 (x> ax 
0 

b, = 0 

c, = ['$ GJ(z>" dx 

Suppose that the applied torque is supplied by a rotating 
unbalanced mass at the tip of the beam. Then the torque 
is 

P = MW2 sin wt 

The generalized force is 

Q, = X,(t > Mw" sin wt (43) 

Then 

8 (x) = c qn x, = c 
X,(x) X,(Z) Mw2 sin wt 

I-- ------ (44 ) 
n n w2 

on.&a Q P Ip 

The normal functions are known for the case of'constant Ip. 

xn Cd = sin (2n - 1) $ T; n = 1, 2, 5, . . . 

Put 

e(z) M sin wt c 1 = --- 
%pIpIn 

( 2 

-- 
_w,, - 1 

W- > 

W 
on.= 2n - 1 
Wl 

e(z) = 1;--- M sin wt c m----m- 
4 P z Ip n'(2n - 1)' wle 

I ------- - 1 

L - Co2 I 

(45) 

(46 > 



The sum of this series can be evaluated by the following 
method. Using the relation (reference 9) 

tan x = - F- 
1 

--co *T -- (n+9) 
(47) 

there is obtained 

co 
x tan x = Z 

i 

1 1 _--------- - m---p 
l (n - *) z - 1 (n,- 3) 2 + 1 

. i 

=E 2 
------_- (48) 

1 

(n 
.2- 

- 4) 
r 2 

-- - 
xa 

1 

Put 

Then 

2x w 
7=cl11. 

(49) . 

In fisure 3 the value of 

0,(Z) * p b I, ----------..LL 
x 

has been plotted against W /VJ 1 fur the first two peaks. 
In figur-e-4, the exact response curve is compared with the 
curve fur one degree of freedom. .. 

* 

Bending y-m-- of .& uniform beam 
------P--- l 

that used for torsion, 
-.By a method similar $0 

the following eqnatione are obtain&a. 
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(50) 

a = 
J 

4 p AXns dx 
0 

b 0 = 

Suppose that the applied force is produced by a ro- 
. tating unbalanced mass at the tip of the beam. Then 

Qn = G(l) Mw2 sin wt 

u(x) 
x,(r) X,(Z) Mw” sin wt 

= E q, xn = c ---- 
n a 

won I$ p A Xn"(x) 
. . 

u(x'> = E 
M X,(x) sin w-t -~-~~--ccI-I 

. ' (g x,(t) (;+ - 1) 

Put 
1 y = c ---- 

n wnB 
7.F -* 1 

and define a pem function 

y' = ; --- IL 
n=l (2n - l)* -1 -------- 

cp4 

i.52 1 

(53) 

(54) 

. 
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c 
l. -.= -e ’ -em-=- --- 

n=l [(2n -1," _ l --- (2n - I.-j2 + l1 
L cpz I[ rp2 J 

P 1 

ii c I 1 = _-_-i+-- * ----- 

1 --a-_-- (2n Q2 - 1) - 1 --_v----- (2n Q2 - II2 + 1 1 

= p 
" 8 

tan 22 - tanh 'n 2 2 
(55 > 

If c3 is defined by (2n - l)o/qc = t'Jn/W f-Or large 

values of n, the function y' is practically identical 
mith the function y, except f-or the first tvo terms of 
the series. By use of this function y' and suitable cor- 
rections for the first two terms of the series, the re- 
spongg.curqe has been calculated for the fFrzst three bend- 
ing modes of a beam and is shown in figure 5. Figure 6 
shows a comparison of these exact resonance peaks with the 
corresponding curve for one degree of freedom. 

APPARATUS 

The apparatus used for these tests was very simple. 
The ,aFplied force was Froducod in part of the tests by a 
small rotating unbalanced mass made b-y tappins a .screw .in: 
to the side of-'a rotating-shaft, fitted fn light bearings 
and clamped to the structure that nas being tested. The 
shaft was turned by a small electric motor fitted with a 
flexible couzfing and suitable gears; the.frequencies.were 
measured by an electric tachometer. Zor the rest of the 
tests, the rotating mass was replaced by a small crank 
coupled to the structure bp a rubber band. 

The amplitudes mere measured by obeervinq the magni- 
fied.image of the filament of a small bulb produced by a 
lens of l/4-inch diameter and 2-3/4-inch focal length-held 
on the structure by a small brass mounting. 
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The models tested were-the wings used in the flutter 
investigation (reference 7) and mere in the form of can- 
tilever beams 6 feet 9 inches long with symmetrical- 
airfoil cross sections. Model 1 was rectangular pith 12- 
inch chord and l/2-inch maximum thickness. It was made of 
duralumin with closely drilled l/2-inch holes,and was cov- 
ered by a 0,006-inch sheet of. durnlumin. Models 26, 2C, 
3, and 4 mere made of solid duralumin with two rows of 
chordrise slits to decrease the‘torsional stiffness. Mod- 
els 6 and 7 were made by covering a balsa structure with 
l/16-inch mahogany. 

. . EXPERIMENTAL~RESULTS 

Three ,methods of measuring damping were used in these 
tests. The damping in the first bending mode of each 
model was determined by measuring the rate of decay of 
free vibration. For the higher modes, some of the tests 
were made with the rotating-mass type and some with the 
crank-and-rubber-band type of vfbrator: In order to min-' 
imlze the influence of normal modes other than the one 
being investigated, the force was applied and the amplid 
tude was measured at the most suitable positions. For ex- 
ample, in the measurement of the damping in the third 
bending mode, the nearest'disturbing frequencies are the 
torsion and the fourth bending. In this case, the force 
was applied to the tip of the beam at the position of the 
node in torsion and the amplitudes were measure'd at the 
edge of the beam at the positson of.'a node of the fourth 
bending mode. '. 

Figure 7 shows plots of the response curves of the 
models tested. In these tests, it was thought unnecessary 
to try to obtain the complete functional dependence of 
damping on amplitude and other variables. Consequently, 
the response curves were analyzed only to the extent of 
finding a representative value of the damping param-eter S. 
It ?7ill be noted that the results for all models of a given 
type of construction gave values of 6 within a range of 
about a factor of 2. In table I are given the numerical 
results for 6. These values were computed from the data 
of figure 7 by use of equations (12). (18). and (23). The 
value of the amplitude at a frequency ratio of 1.1 was 
taken for determfning the best single representative value 
of 6. 



26 -N.A.C.A. Technicel Rote No. 751 

CONCLUSIOXS 

1. In the determination of the damping of structures 
by means-of the--shape of the response curve obtained by 
appLyin< an alternating load at one point of the .structuro, 
the use of the analysis-.for one degree of freedom ie jua- 
tified mhen the-followins conditions are met: 

(a> The dampine rs small. 

(b) The g i t o n s of applying the f-orce and measurins 
the amplitudes -are appropriate from consider- 
ations of disturbins normal modes. 

cc> Only amplitudes close to a resonant peak are 
used to- determine the nondimensional dampins 
parameter., 6. 

2. When the normal f.unctions for a structure are 
known, the damping in the different modes can be separate- 
ly detsrmined from the measured amplitudes at several 
points along the structure. 

7 
I’. The measured values of 6 for a homogeneous 

structure such as a cnntilevor beam of.d.uralurniX are ap- 
proximately equal in the different modes of vibration. 

Langley Memorial Aeronautical Laboratory, 
National Advisory Commfttee f&r Aeronautics, 

Langley Field, Va., December 21, 1939. 
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TA9LE I' 

Values of the Dampfne; P.arameter, 6 - :. . --H-e_ --- --------I__- 
' Mode - ---- -------II- 

Model Sendfng Torsion ------ 
----A _v----i-------r-- 

Duraluinin 
. 0.1130 -- 0.087 w--w ----- ---- --.-----_--m-m-- 

--L-s--e- 0050 '.0053 . 0034 
I _- 

-L--- ---._ ,028 22~+&~~~----- . 
em .020 --w---------I--_ -- 
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Figure l,- A typical elastic hysteresis loop. 

Figure 2.- Simylc mechanical circuits to illustrate 
the affect of a vibrator. 
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Ffgurs 3.- Response curve for torsional vibration of a uniform beam. 
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(aMode 2A; second bending (b)Model 2A;to~ion mode; 
mode; rotating-weight 

(c)Model 3; second bending 
rotating-weight method. 

method. 
rotating-weight method. 

(d)Model 3; third bending (c)Yodel 3;fourth bending 
mode; rotating-weight 

(f)Model 4; seoond bending 
mode;rotating-weight rubber-band method. 

method. method. 
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Figure 7,a-i.-Typical experimental response ourvee. 


